Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Nilofar Nissa, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$ S. Narasimhan, ${ }^{\text {b }}$ V. Rajagopal ${ }^{\text {b }}$ and Moon-Jib Kim ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\mathbf{b}}$ Spic Science Foundation,
Guindy, Chennai 600035 , India, and ${ }^{\text {c }}$ Department of Physics, Soonchunhyang University, PO Box, Asan, Chungnam 336-600, Korea

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.063$
$w R$ factor $=0.195$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Diphenyl-3-isopropylpiperidin-4-one

In the title compound, the two phenyl rings are oriented at an angle of $63.4(1)^{\circ}$ with respect to each other. The 4-piperidone ring adopts a slightly distorted chair conformation. Molecules are packed through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and van der Waals interactions.

Comment

The piperidine ring is a characteristic feature of antihistaminic agents, oral anesthetics, narcotic analgesics, tranquillizers and hypotensive agents (Robinson, 1973). Many piperidine derivatives also form the skeleton of several alkaloids (Hootele et al., 1980). Several 2,6-substituted piperidine derivatives are found to possess fungicidal, herbicidal and bactericidal activities (Mobio et al., 1989). A large variety of 4-piperidones with different substituents in the $1,2,3,5$ and 6 positions with further substitutions in the 2 - and 6 -substituent phenyl rings are reported elsewhere (Jia et al., 1989a,b; Cheer et al., 1984; Sekar et al., 1990, 1993; Sukumar et al., 1994; Díaz et al., 1997). Continuing this series, we report here the structure of 2,6 -diphenyl-3-isopropylpiperidin-4-one, (I). Colourless prismshaped crystals obtained during the synthesis were suitable for X-ray crystallography.

(I)

Fig. 1 shows the molecular structure; bond lengths and angles are given in Table 1. The piperidine ring adopts a slightly distorted chair conformation. Atoms C2, C3, C5 and C6 lie in a plane, whereas N1 and C4 deviate by -0.703 (3) and 0.518 (4) \AA on either side of this plane. The phenyl rings are planar, with a maximum deviation of -0.009 (4) \AA for ring $A(\mathrm{C} 7-\mathrm{C} 8)$ and $0.003(5) \AA$ for $\operatorname{ring} B(\mathrm{C} 13-\mathrm{C} 14)$, and are cis to the piperidine ring [C5-C6-C7-C8 $=59.0(5)^{\circ}$; $\mathrm{C} 3-$ $\left.\mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 14=-72.5(4)^{\circ}\right]$. The dihedral angle between the two phenyl rings is $63.4(1)^{\circ}$.

The bond lengths of the rings vary from 1.352 (5) to 1.386 (5) A. The bond lengths C6-C7 [1.513 (5) A $]$ and C2C13 [1.503 (5) Å] are in good agreement with the overall distances of Csp ${ }^{3}-\mathrm{C}_{\mathrm{ar}}[1.513$ (14) A $]$ (Allen et al., 1987). The endocyclic angles $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12\left[117.3(3)^{\circ}\right]$ and $\mathrm{C} 13-\mathrm{C} 14-$ $\mathrm{C} 18\left[117.8(3)^{\circ}\right]$ are smaller than the average value of 120° as

Received 17 September 2001 Accepted 27 September 2001 Online 6 October 2001

Figure 1
The molecular structure of the title compound, showing the atomlabelling scheme and 50% probability level displacement ellipsoids for the non- H atoms.
observed in related structures (Singh et al., 1990; Eswaramoorthy, 1992). This may be due to conjugation.

Molecules are packed in chains running along the b axis. These continuous chains are stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2). Further stabilization is provided by the shortest $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact and by van der Waals interactions.

Experimental

The procedure adopted for the preparation of the title heterocyclic compound is similar to that of Noller \& Baliah (1948). 0.2 mol of ammonium acetate was dissolved in 30 ml of rectified spirit, and 0.4 mol of benzaldehyde and 0.2 mol of isobutylmethyl ketone were added to this solution. The mixture was heated to boiling point and set aside for a day. The oily base obtained was converted into its hydrochloride by the addition of concentrated hydrochloric acid and the separated solid was filtered, dried and recrystallized from absolute ethanol. To the hydrochloride, a few drops of acetone were added and the mixture was neutralized with liquid ammonia. On dilution with water, the free base was separated and was filtered and recrystallized from absolute ethanol; m.p. 398-399 K.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO} \\
& M_{r}=293.39 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.6008(8) \AA \\
& b=13.459(3) \AA \\
& c=12.0597(12) \AA \\
& \beta=118.611(9)^{\circ} \\
& V=1653.0(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega / 2 \theta$ scans
3046 measured reflections
2897 independent reflections
1320 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\max }=25.0^{\circ}$

$$
\begin{aligned}
& D_{x}=1.179 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=6.2-11.6^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.4 \times 0.3 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& h=-13 \rightarrow 12 \\
& k=0 \rightarrow 15
\end{aligned}
$$

$$
l=0 \rightarrow 14
$$

$$
3 \text { standard reflections }
$$

$$
\text { every } 100 \text { reflections }
$$

$$
\text { frequency: } 60 \mathrm{~min}
$$

intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.195$
$S=0.96$
2897 reflections
201 parameters

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.061 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 6$	$1.447(4)$	$\mathrm{C} 4-\mathrm{O} 19$	$1.204(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.463(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.498(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.550(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.520(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.504(5)$	$\mathrm{C} 20-\mathrm{C} 22$	$1.518(6)$
$\mathrm{C} 3-\mathrm{C} 20$	$1.537(5)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.499(6)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$112.4(3)$	$\mathrm{O} 19-\mathrm{C} 4-\mathrm{C} 5$	$120.2(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 13$	$110.7(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$116.8(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$108.5(3)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$112.6(3)$
$\mathrm{C} 13-\mathrm{C} 2-\mathrm{C} 3$	$112.8(3)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$108.0(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$109.6(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$111.8(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 20$	$115.2(3)$	$\mathrm{C} 22-\mathrm{C} 20-\mathrm{C} 21$	$112.2(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 20$	$114.6(3)$	$\mathrm{C} 22-\mathrm{C} 20-\mathrm{C} 3$	$110.3(3)$
$\mathrm{O} 19-\mathrm{C} 4-\mathrm{C} 3$	$122.8(3)$	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 3$	$114.8(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-66.4(4)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$65.5(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$52.3(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$-52.0(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 20$	$-53.5(4)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-62.9(5)$
$\mathrm{C} 20-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 19$	$9.6(6)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 20-\mathrm{C} 22$	$-70.2(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-44.3(5)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 20-\mathrm{C} 22$	$161.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$44.8(5)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 20-\mathrm{C} 21$	$57.7(5)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$-170.6(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 20-\mathrm{C} 21$	$-70.8(4)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O19				
C	0.90	2.22	$3.101(4)$	166
C-H9 ${ }^{\text {ii }}$	0.93	2.80	$3.584(6)$	143

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $1-x,-y, 2-z$.
All H atoms were fixed geometrically and refined isotropically using a riding model with $\mathrm{N}-\mathrm{H}=0.86, \mathrm{C}-\mathrm{H}$ (aromatic) $=0.93$ and $\mathrm{C}-\mathrm{H}($ aliphatic $)=0.98 \AA$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (EnrafNonius, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLUTON (Spek, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983, 1995).

MN thanks the CSIR for a Senior Research Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cheer, C. J., Cosgrove, J. P. \& Vittimberga, B. M. (1984). Acta Cryst. C40, 1474 1475.

Díaz, E., Barrios, H. \& Toscano, R. A. (1997). Acta Cryst. C53, 1468-1471.
Enraf-Nonius (1994). CAD-4 EXPRESS and XCAD4. Version 5.1/1.2. EnrafNonius, Delft, The Netherlands.
Eswaramoorthy, S. (1992). PhD Thesis, University of Madras, Chennai 600 025, India.

organic papers

Hootele, C., Colan, B. \& Halin, F. F. (1980). Tetrahedron Lett. 21, $5063-$ 5066.

Jia, Z., Quail, J. W., Arora, V. K. \& Dimmock, J. R. (1989a). Acta Cryst. C45, 285-289.
Jia, Z., Quail, J. W., Arora, V. K. \& Dimmock, J. R. (1989b). Acta Cryst. C45, 1117-1118.
Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. \& Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Noller, C. R. \& Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.

Robinson, O. P. W. (1973). Postgrad. Med. J. (Suppl.), 49, 9-12.
Sekar, K., Parthasarathy, S. \& Radhakrishnan, T. R. (1990). Acta Cryst. C46, 1338-1340.
Sekar, K., Parthasarathy, S. \& Radhakrishnan, T. R. (1993). Acta Cryst. C49, 93-95.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Singh, P., Levine, S. G. \& Kasdorf, K. (1990). Acta Cryst. C46, 2469-2470. Spek, A. L. (1997). PLUTON. University of Utrecht. The Netherlands. Sukumar, N., Ponnuswamy, M. N., Thenmozhiyal, J. C. \& Jeyaraman, R. (1994). Bull. Chem. Soc. Jpn, 67, 1-5.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

